Core Mathematics 3 Paper L

1. (i) Differentiate $x^{3} \ln x$ with respect to x.
(ii) Given that

$$
\begin{equation*}
x=\frac{y+1}{3-2 y}, \tag{4}
\end{equation*}
$$

find and simplify an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of y.
2.

The diagram shows the curves $y=3+2 \mathrm{e}^{x}$ and $y=\mathrm{e}^{x+2}$ which cross the y-axis at the points A and B respectively.
(i) Write down the coordinates of A and B.

The two curves intersect at the point C.
(ii) Find an expression for the x-coordinate of C and show that the y-coordinate of C is $\frac{3 \mathrm{e}^{2}}{\mathrm{e}^{2}-2}$.
3. The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}(x) \equiv 6 x-1, \quad x \in \mathbb{R}, \\
& \mathrm{~g}(x) \equiv \log _{2}(3 x+1), \quad x \in \mathbb{R}, \quad x>-\frac{1}{3} .
\end{aligned}
$$

(i) Evaluate $\mathrm{gf}(1)$.
(ii) Find an expression for $\mathrm{g}^{-1}(x)$.
(iii) Find, in terms of natural logarithms, the solution of the equation

$$
\begin{equation*}
\mathrm{fg}^{-1}(x)=2 . \tag{4}
\end{equation*}
$$

4. (i) Use the identity for $\cos (A+B)$ to prove that

$$
\begin{equation*}
\cos 2 x \equiv 2 \cos ^{2} x-1 \tag{2}
\end{equation*}
$$

(ii) Prove that, for $\cos x \neq 0$,

$$
\begin{equation*}
2 \cos x-\sec x \equiv \sec x \cos 2 x \tag{3}
\end{equation*}
$$

(iii) Hence, or otherwise, find the values of x in the interval $0 \leq x \leq 180^{\circ}$ for which

$$
\begin{equation*}
2 \cos x-\sec x \equiv 2 \cos 2 x . \tag{4}
\end{equation*}
$$

5. (i) Show that the equation

$$
2 \sin x+\sec \left(x+\frac{\pi}{6}\right)=0
$$

can be written as

$$
\begin{equation*}
\sqrt{3} \sin x \cos x+\cos ^{2} x=0 \tag{5}
\end{equation*}
$$

(ii) Hence, or otherwise, find in terms of π the solutions of the equation

$$
\begin{equation*}
2 \sin x+\sec \left(x+\frac{\pi}{6}\right)=0 \tag{4}
\end{equation*}
$$

for x in the interval $0 \leq x \leq \pi$.
6.

The diagram shows the curve with equation $y=\sqrt{\frac{x}{x+1}}$.
The shaded region is bounded by the curve, the x-axis and the line $x=3$.
(i) Use Simpson's rule with six strips to estimate the area of the shaded region.

The shaded region is rotated through four right angles about the x-axis.
(ii) Show that the volume of the solid formed is $\pi(3-\ln 4)$.
7. (i) Sketch on the same diagram the graphs of $y=4 a^{2}-x^{2}$ and $y=|2 x-a|$, where a is a positive constant. Show, in terms of a, the coordinates of any points where each graph meets the coordinate axes.
(ii) Find the exact solutions of the equation

$$
\begin{equation*}
4-x^{2}=|2 x-1| \tag{6}
\end{equation*}
$$

8. A curve has the equation $y=\frac{\mathrm{e}^{2}}{x}+\mathrm{e}^{x}, x \neq 0$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Show that the curve has a stationary point in the interval [1.3, 1.4].

The point A on the curve has x-coordinate 2 .
(iii) Show that the tangent to the curve at A passes through the origin.

The tangent to the curve at A intersects the curve again at the point B.
The x-coordinate of B is to be estimated using the iterative formula

$$
x_{n+1}=-\frac{2}{3} \sqrt{3+3 x_{n} \mathrm{e}^{x_{n}-2}},
$$

with $x_{0}=-1$.
(iv) Find x_{1}, x_{2} and x_{3} to 7 significant figures and hence state the x-coordinate of B to 5 significant figures.

